ORNL/TM-2009/100

ADIOS 1.13.1 User’s Manual

April 2018

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S.
Department of Energy (DOE) Information Bridge:

Web site:http://www.osti.gov/bridge
Reports produced before January 1, 1996, may be purchased by members of the
public from the following source:

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161

Telephomne:703-605-6000 (1-800-553-6847)

TDD:703-487-4639

Faz:703-605-6900

E-masil:info@ntis.fedworld.gov

Web site:http://www.ntis.gov/support/ordernowabout.htm
Reports are available to DOE employees, DOE contractors, Energy Technology
Data Exchange (ETDE) representatives, and International Nuclear Information
System (INIS) representatives from the following source:

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone:865-576-8401

Fax:865-576-5728

E-masil:reports@Qadonis.osti.gov

Web site:http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof. The views and opinions of

authors expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

ORNL/TM-2009/100
ADIOS 1.13.1 USER’S MANUAL

Prepared for the
Office of Science
U.S. Department of Energy

Authors
Norbert Podhorszki, Qing Liu, Jeremy Logan, Jingqing Mu, Hasan Abbasi, Jong-Youl Choi, Scott A. Klasky

Contributors

Jay Lofstead, Steve Hodson, Fang Zheng, Matthew Wolf, Todd Kordenbrock, Nagiza Samatova, Jay Dayal,
Yuan Tian, David Boyuka

April 2018

Prepared by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6070
managed by
UT-BATTELLE, LLC
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-000R22725

Contents

12

M1 Goald . . o ot e 12
[L2 What is ADTOST e 12
[1.3 The Basic ADIOS Group Concept| e 12
(1.4 Other Interesting Features of ADIOS|. o oL 12
(1.5 What’s new in version 1.13.11 L 13
(1.6 What's new in version 1.13[. L L 13
(L7 What’s new in version 1.12] oL e e e 13
L8 What’s new in version T.TT] oot 14
(1.9 What’s new in version 1.101 L L 15
(.10 What’s new in version 1.9 Lo e 15
(L11 What's new in version 1.8l L e e e e 16
(.12 What's new in version 1.7« . . oL e e e 16
[LI3 What’s new in version 1.6] L 17
14 What’s new in version 1.5 L 17
(.15 What’s new in version 1.4 L. 18
[2_Installationl 19
2.1 Obtaining ADIOS| 0 o e 19
2.2 Quick Installation|. oo 19
2.2.1 Quick installation with Automake] oo oL oo 19
2.2.2 Quick installation with CMake| oo oo 20

2.3 ADIOS Dependencies| o e e e e 21
[2.3.1 Python 2.x or 3x (required)|. 21
2.3.2 MPI and MPI-IO (recommended, optional)| 21
2.3.3 Fortran90 compiler (optional)| Lo Lo 21
2.3.4 Mini-XML parser (included now in ADIOS)[. 21

2.3.5 Lustreapi (optional)] 21
2.3.6 Staging transport methods (optional)| L0000 L. 21
037 Data transformation plugins (optional)|. o 23
2.3.8 Query methods (optional)| 24
2.3.9 Read-only installation] 25
2.3.10 Serial HDF5 (optional)] v v v v v v v e e e 25
2.3.11 PHDEFDS (optional)l e 25
312 NetCDF-4 Parallel (0ptional)] - o o o oo e 25

2.4 Full Installationl o 25
2.4.1 Full Installation with Automakel 000 oo 25
2.4.2 Full Installation with CMakelo oo 00000 oo 27

2.5 Compiling applications using ADIOS|. o 27
P51 Sequential applications]. 28

[2.6 Language bindings|o Lo 29
[2.6.1 Support for Matlabl. oo 29
2.6.2 Support for Javalo oL o 29
2.6.3 Support for Python/Numpy|. o L 29

3 ADIOS Write APIl
[3.1 Write API Description| o e
B.1.1 Introductionl e
3.1.2 ADIOS-required functions| L Lo
3.1.3 Asynchronous I/O support functions| Lo
BI4 Other functionsl.« v v vt i it
[3.2 Write Fortran API description|
8.2.1 Create the first ADIOS program| o oo

4 ADIOS No-XML Write APT |
[4.1 No-XML Write API Description|

4.1.1 adios 1nit noxml| oL

412 adios_set_max_buffer_size] L.
1.1.3 adios declare group| v v v v v e e e e e e
4.1.4 adios define var|. L

4.1.5 adios set transform|.
4.1.6 adios write byid|o oo
MI7 adios_define_attribute
1. adios define attribute byvaluel 0 o000 oo oo
4.1.9 adios select method| o

4.1.10 adios_expected _var_size|o
[£2 Create a no-XML ADIOS program] v i i

4.3 No-XML Write API for visualization schema Description|.
4.3.1 adios define schema version| oo
132 adios define var mesh|. it e e e e
4.3.3 adios define var centering] e
4.3.4 adios define var timesteps| oL oo
4.3.5 adios define var timescale]o oL
4.3 adios define var timeseriestormat| L o0 n e
.3. adios define var hyperslab| o o o
4.3.8 adios define mesh timevarying| oo
4.3.9 adios define mesh timesteps| o Lo
4.3.10 adios define mesh timescale]o Lo
[.311 adios_define_mesh timeseriesformat]
A3 adios define mes TOUD| . v . v e e e e e
.3. adios define mes el ..
4.3.14 adios define mesh wunitorm| o oL 0o oo
4.3.15 adios detine mesh rectilinear| 00000
4.3.16 adios define mesh structured|. Lo
[A.3. adios define mesh unstructured| o0 e e

[XML Config File Format|
BI OVEIVIEW] .« - o o o oo e

31
31
31
31
35
35
35
38

39
39
39
40
40
40
41
41
42
42
43
44
44
45
46
46
46
47
47
47
48
48
48
49
49
49
30
50
50
51
51

5.6.1 Declarationl L 58

[5.7 An Example XML file] 0 .o o 59
|6 Transport Methods| 60
[6.1 Mainline Transport Methods| 60
6.1.1 NULLI o 60
6.1.2 POSIX] . . . e 60
6.1.3 MPIl . . . o e 61

VP USTRE[. oo 61

[(15 MPT_AGGREGATE]. 62
[(16 VAR _MERGE| 63
BLT DAIASDACET] - « - « « o e e e e e 64
6.1.8 DIMES| 65
6.1.9 Flexpath| e 66
BII0 PHDES . . . oo e e e 66
... 67
BIT2TICER] . . . o o o o oo e e 67
6.2 Research Methodsl e 67
[6.2.1 Network Scalable Service Interface (NSSI)| 68
[622 DataTapl. 69
6.23 MPI-CIOl 70
6.24 MPI-ATOl o 70

|7 Time aggregation| 72
[7.1 Synchronizing flushes with another group’s output| 72
I8 Data Transformations 74
8.1 Available data transformationslo Lo oL 74
[8.2 Writing with data transtormations|o oL 74
[8.3 Reading with data transformations| L Lo o 76
[8.4 Considerations when selecting data transtorms|, 77
[8.5 Compatibility| e e e e e e e 77
9 ADIOS Read APIl 78
78

[9.1.1 Changes from version 1| 78
[OT2 TConcepts 78
9.1.3 Selectionsl 80

9.2 How to use the read functions| o o 80
9.3 Notesl 81
9.4 Read C API description| e e 81
9.4.1 adios errmsg / adios €rrno|.o 82
9.4.2 adios read 1nit method| Lo 82
0.4.3 adios read finalize method] 83
|§.4.4 adios_read _OpPen|. e e e 83

4. adios read open filel oo o 84

9.4.6 adios read closel. 84
[047 adios_advance_step| 85
[0.48 adios_release _step|. 85
|§.4.9 adlos_INQ_ VALl « v v v v v e e e e e e e e e e 86

4. adlos Inq var byld|. L e 86
[0.4.11 adios_free_varinfo]. 86
[0-472 adios_inq_var_stat] 86
[0.4313 adios_inq_var_blockinfo] 87

selections|o 87

[9.4.15 adios_schedule_read|. o o oo &8

[0.476 adios_schedule_read byid] 89
|9.§.12 adios_perform_reads| &9
9.4.18 adios check reads|. 89
[0.419 adios_free_chunk] 90
[0.4.20 adios_get_att] 90
[0-421 adios_get_attr_byld 90
|9.§.22 adios _type to_string|. 90
9.4.23 adios type SIze| e e 91
D420 adios 80t SIOWPIST « -« « o o o e 91
[0:425 adios _group view] e 91

[9.5 Time series analysis API Description| o o L 91
[0.5.1 "adios stat cor /adios stat COV] . . - e 91

9.6 Read Fortran APl description|. Lo 92
[9.7 Read Schema APl description| L Lo e 96
9.71 adios_ing_mesh byid. o 0 o o 96
072 adios_free_meshinfo]. L o 97
[0.73 adios inq var meshinfo] L L 97

[9.8 Compiling and linking applications| 00 00000 97
[0.8.1 C/C++applications] 97
[0.82 Fortran applications] o i i i e 97

[9.9 Supported scenarios and samples|o L 97
9.10 Reading a fileas file] o L 98
[9.10.1 Discover and read in a complete variable|.o 0oL 98
19.10.2 Multiple steps of a variablel oo oo 98
9.10.3 Read a bounding box subset of a variable] 000, 98
[9.10.4 Reading non-global variables written by multiple processes| 99
017 Reading streams| 100
9.11.1 Opening a stream| Lo e e e 101
9.11.2 Reading one step at a time, blocking if a new step is late] 101
9.11.3 Locking and step advancing scenarios| o vt e e e 101
9.11.4 Handling errors due to missing steps| Lo oL 102

[9.12 Non-blocking reads| e e 102
[0-12.17 Chunk reads: read without pre-allocating buffers| 102
[9.12.2 Read into user-allocated bufferd oo oo oL 103
9.13 More esoteric SCenarios]. o o e e e e e e e e e e e 104
9.13.1 In situ read: read data locally available on the node| 104
[9.13.2 Variable stepping of variables in a stream| 104

10 uery 106
[10.1 Introductionl. L e 106
[10.2 How to use the query functions| 106
(03 Quory MOthodS) - - » - - - - o oo oo 107
MOBT MIDMAX] -« « o o v v o oo e e e e 107
MO32 TFastBIE . .« o o o v o o e e 108
10.3.3 Alacity] o e e e e 108
10.4 Notesl . . o . o o e e e e e e e e e 108
[10.4.1 Query evaluation in a parallel program|.o o000 108
110.4.2 Results too large to handle] o oo 108
110.4.3 Selections everywhere in the query API? Why?77 0 o0 oo o000 108
110.4.4 Default query method| o 108
[10.5 Supported scenarios and samples|o o000 o000 109
[[0-5.7 Querying over multiple variables] . . - . . .« v vt v o e 109
110.5.2 Querying over columns of atable|] o000 109
[10.6 Query C API description| e 109
[10.6.1 Types and data structures|. L L 109

[10.6.2 adios_query is_method available|.00 0000000
[10:6.3 adios_query create]
10.6.4 adios query combine| Lo Lol e e
0.6.0 adios query set method|. oo

.0.6 adios query estimatel L L e e e e e

[10.6.7 adios_query evaluate]
[10.6.8 adios query Tre€] o
[10.7 Query Fortran API description| Lo

11 Utilitiesl

11.1 adios lint| e

...

.3 adios Index fastbit| L L L e e e e e e

o
..

11.6 bprecover| e e e e

|13 Group Read/Write Process|
[13.1 Gwrite/gread/read|o
[[32 Add conditional expression]o . i i e e e e e

114 Language bindings|
[14.1 Java support| L e e e e
4171 Adiosclassl o o
114.1.2 Adioskile, AdiosGroup, and AdiosVarinfo classes|
[14.1.3 AdiosDatatype, AdiosFlag, and AdiosBufferAllocWhen classes]
[[4T4 Example.
(14.2 Python/Numpy support|
[[42.1 APIs for Writing and NO-XML]| o o i e
114.2.2 APIstor Reading|.
114.2.3 Helper class for writing]

[14.2.4 Utility functions|o e
[[225 Examples|

[15 C Programming with ADIOS|

[[5.1 Non-ADIOS Program| ottt e et

152 Constructan XML Filel
15.3 Generate .ch file (s)]
15.4 POSIX transport method (P writers, P subfiles + 1 metadata file)]
15.5 MPI-IO transport method (P writers, 1 file)|,
[15.6 Reading data from the same number of processors|
15.7 Writing to Shared Files (P writers, N files)]
[[5.8 Global Arrays|. oo vt e
15.8.1 MPI-10 transport method (P writers, 1 file)|.
15.8.2 POSIX transport method (P writers, P Subfiles + 1 Metadata file)|
[15.9 Writing Time-Index into a Variable.
[[5.10Reading StatistiCs]. . - . - « v v v v v o e e e e e e

113
113
113
113
113
115
115
116

117
117
117

118
118
118

120
120
120
122
123
123
124
125
126
130
132
133

|16 Site-specific Recommendations| 146

[16.1 Optimizing access to the parallel file system| o000 146
METTTIAD] - -« o o o o e e e e e e e e 146

[16.1.2 KNL Partition on Cori at NERSCl 146

[L6.2 Optimizing I/O through the use of Burst Buffers| 146
.. 147

16.2.2 Corf@NERSCL. e 148

19
[17.1 Datatypes used in the ADIOS XML file] 149
172 ADTIOS APTS Tistl. o o o e e 150
[17.3 An Example on Writing Sub-blocks using No-XML APIsf. 150

List of Figures

[6.1 Server-friendly metadata approach: offset the create/open in time| 62
[6.2 Spatial Aggregation of a 4x4 2D Variable From 4 proceeses to PTocess 0] 64
[6.3 DataTap architecture|. o e e 70
[16.1 Performance of the XGC application on Cori using KNL CPUs writing directly to the Lustre |
parallel file system. Experiments utilized a maximum of 200 O5'ls. Optimal performance is |
obtained by having more writers per node for smaller node counts, whereas fewer writers per |
node perform well for larger allocations.|o 0000000 147
[16.2 ADIOS performance of (a) writing and (b) reading with Burst Buffer on Summit-dev (Summit’s
early access system) as of Jun 2017. Summit-dev has node-local NVMes. Note that the writing
is accelerated by system cache, while reading I/0 is not. Without system cache effect, we
observed the write performancein (c)] L L oL 147
[16.3 ADIOS performance with Burst Buffer on Cori as of Jun 2017. Cori has a centralized global |
parallel file system, called Burst Bufter.|00 0. 148

10

Abbreviations

ADIOS Adaptive Input/Output System

APIT Application Program Interface

DART Decoupled and Asynchronous Remote Transfers
GTC Gyrokinetic Turbulence Code

HPC High-Performance Computing

I/0 Input/Output

MDS Metadata Server

MPI Message Passing Interface

NCCS National Center for Computational Sciences
ORNL Oak Ridge National Laboratory

OS Operating System

PG Process Group

POSIX Portable Operating System Interface
RDMA Remote Direct Memory Access

XML Extensible Markup Language

Acknowledgments

The Adaptive Input/Output (I/O) system (ADIOS) is a joint product of the National Center of Com-
putational Sciences (NCCS) at Oak Ridge National Laboratory (ORNL) and the Center for Experimental
Research in Computer Systems at the Georgia Institute of Technology. This work is being led by Scott
Klasky (ORNL); Jay Lofstead (Georgia Tech, funded from Sandia Labs) is the main contributor. ADIOS
has greatly benefited from the efforts of the following ORNL staff: Steve Hodson, who gave tremendous
input and guidance; Chen Jin, who integrated ADIOS routines into multiple scientific applications; Norbert
Podhorszki, who integrated ADIOS with the Kepler workflow system and worked with Qing Gary Liu on the
read API. ADIOS also benefited from the efforts of the Georgia Tech team, including Prof. Karsten Schwan,
Prof. Matt Wolf, Hassan Abbasi, and Fang Zheng. Wei Keng Liao, Northwestern University, and Wang
Di, SUN, have also been invaluable in our coding efforts of ADIOS, writing several important code parts.
Essentially, ADIOS is componentization of I/O transport methods. Among the suite of transport methods,
Decoupled and Asynchronous Remote Transfers (DART) was developed by Prof. Manish Parashar and his
student Ciprian Docan of Rutgers University.

Without a scientific application, ADIOS would not have come this far. Special thanks go to Stephane
Ethier at the Princeton Plasma Physics Laboratory (GTS); Researcher Yong Xiao and Prof. Zhihong Lin
from the University of California, Irvine (GTC); Julian Cummings at the California Institute of Technology;
Seung-Hoe and Prof. C. S. Chang at New York University (XGC); Jackie Chen and Ray Grout at Sandia
(S3D); and Luis Chacon at ORNL (Pixie3D).

This project is sponsored by ORNL, Georgia Tech, The Scientific Data Management Center (SDM) at
Lawrence Berkeley National Laboratory, and the U.S. Department of Defense.

11

Chapter 1

Introduction

1.1 Goals

As computational power has increased dramatically with the increase in the number of processors, input/out-
put (IO) performance has become one of the most significant bottlenecks in today’s high-performance com-
puting (HPC) applications. With this in mind, ORNL and the Georgia Institute of Technology’s Center
for Experimental Research in Computer Systems have teamed together to design the Adaptive I/O System
(ADIOS) as a componentization of the IO layer, which is scalable, portable, and efficient on different clusters
or supercomputer platforms. We are also providing easy-to-use, high-level application program interfaces
(APIs) so that application scientists can easily adapt the ADIOS library and produce science without diving
too deeply into computer configuration and skills.

1.2 What is ADIOS?

ADIOS is a state-of-the-art componentization of the IO system that has demonstrated impressive IO perfor-
mance results on leadership class machines and clusters; sometimes showing an improvement of more than
1000 times over well known parallel file formats. ADIOS is essentially an I/O componentization of different
I/0O transport methods. This feature allows flexibility for application scientists to adopt the best I/O method
for different computer infrastructures with very little modification of their scientific applications. ADIOS has
a suite of simple, easy-to-use APIs. Instead of being provided as the arguments of APIs, all the required
metadata are stored in an external Extensible Markup Language (XML) configuration file, which is readable,
editable, and portable for most machines.

1.3 The Basic ADIOS Group Concept

The ADIOS “group” is a concept in which input variables are tagged according to the functionality of their
respective output files. For example, a common scientific application has checkpoint files prefixed with restart
and monitoring files prefixed with diagnostics. In the XML configuration file, the user can define two separate
groups with tag names of adios-group as “restart” and “diagnostic.” Each group contains a set of variables
and attributes that need to be written into their respective output files. Each group can choose to have
different I/O transport methods, which can be optimal for their I/O patterns.

1.4 Other Interesting Features of ADIOS

ADIOS contains a new self-describing file format, BP. The BP file format was specifically designed to support
delayed consistency, lightweight data characterization, and resilience. ADIOS also contains python scripts
that allow users to easily write entire “groups” with the inclusion of one include statement inside their
Fortran/C code. Another interesting feature of ADIOS is that it allows users to use multiple I/O methods
for a single group. This is especially useful if users want to write data out to the file system, simultaneously
capturing the metadata in a database method, and visualizing with a visualization method.

12

The read API enables reading arbitrary subarrays of variables in a BP file and thus variables written out
from N processor can be read in on arbitrary number of processors. ADIOS also takes care of the endianness
problem at converting to the reader’s architecture automatically at reading time. Matlab reader is included
in the release while the Vislt parallel interactive visualization software can read BP files too (from version
2.0).

ADIOS is fully supported on Cray and IBM BlueGene/P supercomputers as well as on Linux clusters and
Mac OSX.

1.5 What’s new in version 1.13.1

This release contains bug fixes for applications that write compressed arrays where some process writes zero-
sized blocks into the global array, and for applications that output many timesteps. Also, the build system
for the external library used by the Flexpath staging method has been reworked (and renamed from chaos
to korvo) and this document updates the build process for ADIOS with Flexpath.

e fix: zero size variable-blocks are supported by all transformations
e fix: build issues with the profiling interface

e fix: free temporary MPI communicators so that applications don’t run out of communicators when
using ADIOS for many output steps

fix: build issues with Flexpath staging

1.6 What’s new in version 1.13

e Added blosc compression transform by René Widera HZDR, Germany

e TAU now can profile ADIOS in applications, by Kevin Huck of the TAU team

e Updated to use SZ v1.4.11 compression

e bpls -dD option to dump data in per-writer fashion (aka reading with writeblock selection)
e fix: bug fixes to new Flexpath staging method (MPI communicator, memory leaks)

e fix: bpls command-line allows for large integers to dump data from >2GB blocks

e support for JoinedArray, where per-writer data blocks are virtually merged into a global array by
ADIOS at read time for easier reading. See examples/C/joined-array in the source.

1.7 What’s new in version 1.12

This release adds support for LZ4 lossless compression and SZ error bounded lossy compression, provides
a more robust version of FlexPath staging method, and a performance profiling API that perfor-
mance tools like TAU and Vampir can use to gather information about ADIOS operations. The POSIX and
MPI_AGGREGATE methods support writing to a distributed file system (e.g. Summit@OLCF machine’s burst
buffer) and an application can read it back as long as every process reads back the data generated on the
same compute node.

A new chapter has been added in the user manual that discusses optimal ways of performing I/O using
ADIOS on different supercomputing sites across the world. It includes recommendations on using burst
buffers on the Summit@QOLCF and Cori@NERSC supercomputers. For more information, see chapter

e SZ lossy compression, see https://collab.cels.anl.gov/display/ESR/SZ| for details. Options in
ADIOS are discussed in Chapter

e [.Z4 compression was added by a user of ADIOS, René Widera from HZDR,, Germany

13

https://collab.cels.anl.gov/display/ESR/SZ

1.8

Profiling API was added by Kevin Huck of the TAU team http://ix.cs.uoregon.edu/ khuck. Tool
developers need to use the adiost_callback_api.h. A basic default tool implementation is in
src/core/adiost_default_tool.c

The FLEXPATH staging method from Georgia Tech has been redesigned for more robust and faster data
staging. The new version of the chaos library is required https://anon@svn.research.cc.gatech.
edu/kaos/chaos_base/trunk

Transport parameter "local-fs=1" will allow the POSIX and MPI_AGGREGATE methods write the output
to a distributed file system. The output path is the same on all compute nodes. Any reader process
will see the global arrays (definition) but only can successfully read that portion of the data that was
written on the same compute node. Think of checkpoint/restart as an example.

Bug fixes for time-aggregation, reading >2GB blocks from file, CMake build, etc.

What’s new in version 1.11

Two new features in this release are time aggregation and the ZFP lossy compression transformation.
Time aggregation allows for buffering a small/frequently written dataset for multiple output steps and flush
to disk less frequently. The buffer size is controlled by the user. Optionally the aggregated group can be
forced to flush when another group (e.g. checkpoint) is written. Lossy compression allows for reducing output
data much further than what’s available with the current lossless compression transformations. ZFP gives
control to the user to set the required accuracy in the output dataset.

Time aggregation of a group. See adios_set_time_aggregation() or the <time-aggregation> ele-
ment in the XML syntax in Chapter

ZFP lossy compression transform method, see Chapter [§
Python wrapper includes functions [I£.2] for :

— selecting transforms and time aggregation: adios_set_transform()
— time aggregation: adios_set_time_aggregation()
— set maximum buffer size used by any ADIOS group: adios_set_max_buffer_size()
Collect min/max statistics only by default. adios_declare_group() last argument type changed

to be an option for statistics. Options are: adios_stat_no, adios_stat_minmax, adios_stat_full,
and adios_stat_default, which is minmax.

Added functions to C API to detect available methods in the ADIOS installation

— adios.h: adios_available_write_methods()
— adios_read.h: adios_available_read_methods()
— adios_transform_methods.h: adios_available_transform_methods ()

— adios_query.h: adios_available_query_methods ()
Bug fixes

— Performance bug in MPI_AGGREGATE method in 1.9/1.10 fixed. Concurrent aggregation and writing
was not working efficiently.

— Build bug when configured with the latest HDF5 1.10 release.

14

http://ix.cs.uoregon.edu/~khuck
https://anon@svn.research.cc.gatech.edu/kaos/chaos_base/trunk
https://anon@svn.research.cc.gatech.edu/kaos/chaos_base/trunk

1.9

What’s new in version 1.10

The new feature of this release is the new Query API and three query methods, Minmax, FastBit and
Alacrity. This release makes the oft-criticized adios_group_size() call optional. Another convenience is
that the MXML dependency is now built with ADIOS so it does not need to be built separately. Also, a
sequential-only build is possible using the —without-mpi option.

Changes to the APIs are that the buffer allocation command should be modified or removed, either in
the xml configuration file (see section or in the source code (see section [4.1.2).

Updated Query API, see Chapter [I0]

Minmax, FastBit and Alacrity query methods

adios_group_size() is optional

ADIOS builds without first installing Mini-XML separately

bprecover utility to recover datasets with many output steps where a step becomes corrupted, see [11.6]
Point selections can provide a container selection to improve read performance

Added —without-mpi option to configure, so that only the sequential libraries are built

Adios Python wrapper

— Updated to support both python 2 and python 3
— Added read options with point and block selection
— Added group management on reading

— Updates on auto completion with ipython

Bug fixes

Build on OS X, both clang and gcc supported
— Better xml processing to allow for multiple text lines as parameters for a method
— Support adios_inqg_var_stat() when reading a file in streaming mode

— bpmeta does not skip any subfiles anymore when used with threads

1.10 What’s new in version 1.9

The novelty in this release is the support for small arrays of attributes, requested by various applications
to simplify storing attributes. The other new thing is the update mode, which is similar to append mode
but the timestep does not increase. That is, one can add new variables to the latest output step in a file.
Other than that, this release contains mostly bug fixes.

e Array attributes are supported, e.g string axes = {"X","y","z"}

e New function adios_define_attribute_byvalue() to define scalar attributes with program variables

instead of string values. See the example code in examples/C/global-array/no_xml_write_byid.c.

e Update mode when appending to a file to add variables to last timestep instead of a new one.

e Improvements of the ADIOS Python/Numpy wrapper

— Numpy-style array notations, e.g, var[1:5, 2:10], var[1:5. :], var[:5,...].
— Support for the ADIOS write APL.

— Hint/docstring support.

— Support for pip install and update.

15

e Added adios_version.h to installation so that applications have access to the ADIOS release version
as well as the file format version.

e Bug fixes
— Fix memory leak in POSIX method.

— adios_write() now accepts const * void data from C-+ apps.
— Cray compiler is supported now.

— Fix reading of compressed, zero size arrays on some processes.

Fix scaling bugs in aggregate method writing > 2GB per process or when aggregating data into a
file over 4GB.

1.11 What’s new in version 1.8

The novelties in this version are the Query API to allow for reading data of interest only, and a transport
method capable of moving data over the Wide-area-network.

e Query API, which extends the read API with queries (evaluate a query, then read data points that
satisfy the query)

e Staging over WAN (wide-area-network) using the ICEE transport method.
e New utilities

— skeldump to generate info and code from output data to replay the I/O pattern of the original
application

— bpmeta to generate metadata file (.bp) separately after writing the data using MPI_AGGREGATE
method with metadata writing turned off

e I/O timing statistics and timing events can be collected (see configure options —disable-timers and
—enable-timer-events)

e Usability enhancements

— Parallel build of ADIOS (make -j 8)
— Staging with multiple streams allowed

— New stage writer code for staged I/O, where output data (list of variables and their sizes) is
changing at every timestep. See examples/stage_write_varying

1.12 What’s new in version 1.7

This version brings several improvements for usability and portability.
e Support for more than 64k variables in a file.

e File system topology aware I/O method for Titan@OLCEF. It uses better routing from compute nodes
to file system nodes to avoid bottlenecks.

e Usability enhancements

— adios_config -m to print available write/read methods
— CMake Module for find_package (ADIOS)

e Additions to non-XML Write API:

— Support for the visualization schema (as was in 1.6 for the XML version of the API)

16

— Added function adios_set_transform() to choose the transformation for a variable. Call it after
adios_define_var()

e DataSpaces staging

— support for 64bit dimension sizes
— support for more than three dimensions
— it works on Bluegene/Q (both DataSpaces and DIMES methods)

— DataSpaces can run as a service, allowing dynamic connections/disconnections from applications

1.13 What’s new in version 1.6

The novelty in version 1.6 is the introduction of on-the-fly data transformations on variables during file-
based I/O. Currently, several standard lossless compression methods are supported (zlib, bzip, and szip), and
a plugin framework is in place to enable more transform services to be added in the future. ADIOS allows
each variable to independently be assigned a different transform (or no transform) via the XML configuration
file, and no recompilation is needed when changing the transform configuration in the XML. See Section [2.3.7]
for information on enabling the compression transform plugins during ADIOS installation, and Section [8] for
information on their use.

Note: other research data transforms have also been developed: ISOBAR lossless compression and APLOD
byte-level precision-level-of-detail encoding. If interested, contact Nagiza Samatova (samatova@csc.ncsu. edu)
for more information on installing these libraries with ADIOS.

Some small changes to the APT have been made in this version that may require you to change your application
using older ADIOS versions:

e Variables are identified by full path at writing (and reading), as they are defined. Omission of the path
part and referring to the name only in function calls now will result in an error.

e The leading / in variable paths at reading is not enforced by the READ API, i.e., if you write "nx", you
must read "nx" and if you write "/nx", you must read "/nx". Before, these two paths were handled
identical.

e Fix: all functions with an integer return value now return 0 on success and !=0 on error.

Basically, the user-friendly lax name matching is replaced by strict full-path matching. In return, ADIOS
can handle tens of thousands of variables in a dataset much faster than before.

Moreover, the C version of the READ API is extended with functions to get information about the visu-
alization schema stored in the dataset. The file structure returned by adios_open() contains the name
list of meshes defined in the dataset. adios_ing_mesh_byid() returns a structure describing a mesh, and
adios_inq_var_meshinfo() tells on which mesh should one visualize a given variable.

Finally, one can build the ADIOS code separately from the source with the automake tools. Just run the
<sourcedir>/configure script in a separate directory, then run make.

1.14 What’s new in version 1.5

Some small changes to the API have been made in this version.
e adios_init() has an MPI Comm argument

e adios_open() also has an MPI Comm argument instead of a void * argument. This means, existing
codes have to be modified to pass the communicator itself instead of a pointer to it. The C compiler
gives a warning only when compiling old codes, which can easily be missed.

17

e adios_read_open() is introduced instead of adios_read_open_stream() to indicate that this function
is to be used equally for files and staged datasets. It opens the file/stream as a stream, see more
explanation in the Read API chapter [9}

Two new staging methods, DIMES and FLEXPATH have been added. They require third-party software
to be installed.

A new build system using CMake has been added. The two, automake and CMake build will go along for
a while but eventually ADIOS will use CMake.

A new write method, VAR _MERGE, has been added, that performs spatial aggregation of small data
blocks of processors to write larger chunks to the output file. It improves both the write and read performance
of such datasets.

1.15 What’s new in version 1.4

With ADIOS 1.4, there are several changes and new functionalities. The four major changes are in the Read
APIL:

e No groups at reading anymore. You get all variables in one list. There are no adios_gopen /
adios_gclose / adios_ing_group calls after opening the file.

e No time dimension. A 3D variable written multiple times will be seen as a 3D variable which has
multiple steps (and not as single 4D variable as in adios 1.3.1). Read requests should provide the
number of steps to be read at once separately from the spatial dimensions.

e Multiple reads should be "scheduled" and then one adios_perform_reads() will do all at once.

e Selections. Instead of providing bounding box (offset and count values in each dimension) in the read
request itself, a selection has to be created beforehand. Besides bounding boxes, also list of individual
points are supported as well as selections of a specific block from a particular writing process.

Overall, a single old adios_read_var() becomes three calls, but n reads over the same subdomain
requires 1 + n + 1 calls. All changes were made towards in situ applications, to support streaming, non-
blocking, chunking reads. Old codes can use the old read API too, for reading files but new users are strongly
encouraged to use the new read API, even if they personally find the old one simpler to use for reading data
from a file. The new API allows applications to move to in situ (staged, or memory-to-memory) processing
of simulation data when file-based offline processing or code coupling becomes severely limited.

Other new things in ADIOS:

e New read APIL Files and streams can be processed step-by-step (or files with multiple steps at once).
Multiple read requests are served at once, which enables for superior performance with some methods.
Support for non-blocking and for chunked reads in memory-limited applications or for interleaving
computation with data movement, although no current methods provide performance advantages in
this release.

e Fortran90 modules for write and read APIL. Syntax of ADIOS calls can be checked by the Fortran
compiler.

e Java and Numpy bindings available (they should be built separately).

e Visualization schema support in the XML configuration. Meshes can be described using output variables
and data variables can be assigned to meshes. This will allow for automatic visualization from ADIOS-
BP files with rich metadata, or to convey the developer’s intentions to other users about how to visualize
the data. A manual on the schema is separate from this Users’ Manual and can be downloaded from
the same web page.

o Skel I/0O skeleton generator for automatic performance evaluation of different methods. The XML
configuration, that describes the output of an application, is used to generate code that can be used to
test out different methods and to choose the best. Skel is part of ADIOS but it’s manual is separate
from this Users’ Manual and can be downloaded from the same web page.

18

Chapter 2

Installation

2.1 Obtaining ADIOS

You can download the latest version from the following website

http://www.olcf.ornl.gov/center-projects/adios

2.2 Quick Installation

At the minimum, MPI C/C++ compilers and Python 2.x are needed to build ADIOS. A Fortran90 compiler
and mpif90 compilers are needed to build the Fortran libraries and examples. Also, the Matlab and Python
wrappers require relocatable library code, so compile the ADIOS code with the -fPIC flag.

2.2.1 Quick installation with Automake

To get started with ADIOS, the following steps can be used to configure, build, test, and install the ADIOS
library, header files, and support programs. We suggest to use the -fPIC flag to build a library that can be
used by python, Matlab, VisIt or anything that relies on shared libraries.

cd adios-1.13.0

mkdir build

cd build

../configure -prefix=<install-dir> CFLAGS="-fPIC"
make

make install

Note: There is a runconf batch script in the trunk set up for our machines. Studying it can help you
setting up the appropriate environment variables and configure options for your system. Then instead of
running ../configure, run ../runconf.

cd build
../runconf
make

2.2.1.1 Linux cluster
The following is a snapshot of the batch scripts on Sith, an Intel-based Infiniband cluster running Linux:

export MPICC=mpicc
export MPICXX=mpiCC
export MPIFC=mpif90
export CC=pgcc
export CXX=pgCC

19

export FC=pgfo0
export CFLAGS="-fPIC"

./configure --prefix = <location for ADIOS software installation>

The compiler pointed by MPICC is used to build all the parallel codes and tools using MPI, while the
compiler pointed by CC is used to build the sequential tools. In practice, mpicc uses the compiler pointed
by CC and adds the MPI library automatically. On clusters, this makes no real difference, but on Bluegene,
or Cray XT /XK, parallel codes are built for compute nodes, while the sequential tools are built for the login
nodes. The -fPIC compiler flag is needed only if you build the Matlab language bindings later.

2.2.1.2 Cray supercomputers

To install ADIOS on a Cray system, the right compiler commands and configure flags need to be set. The
required and some recommended commands for ADIOS installation on Titan are as follows:

export CC=cc

export CXX=CC

export FC=ftn

export CFLAGS="-fPIC"

./configure --prefix = <location for ADIOS software installation>

2.2.2 Quick installation with CMake

CMake is an alternative way used to configure, build, test, and install the ADIOS library, header files, and
support programs. CMake 2.8.0 or higher is required to build ADIOS.

cd adios-1.13.0/
mkdir build

cd build
../cmake_init
make

Note: The cmake_init batch script is set up for our machines. You need to set up the appropriate
environment variables and configure options for your system.

If crossing-compiling is required for a certain system, for example the intel compiler on Titan, there
is another cmake variable CMAKE TOOLCHAIN FILE need to be initialized. This changes the cmake
command from

cmake
to
cmake -DCMAKE_TOOLCHAIN_FILE=../toolchain.cmake

To install ADIOS on a Cray XKB6, the right compiler commands and configure flags need to be set. The
required commands for ADIOS installation on Titan are as follows:

export CC=cc

export CXX=CC

export FC=ftn

export CFLAGS="-fPIC"
cmake <ADIOS_SOURCEDIR>

2.2.2.1 Linux cluster

The following is a snapshot of the batch scripts on Sith, an Intel-based Infiniband cluster running Linux.
Note the difference between the Automake and CMake builds: CMake uses MPI compilers for the complete
build in the current version of ADIOS.

20

export CC=mpicc

export CXX=mpiCC

export FC=mpif90

export CFLAGS="-fPIC"
cmake <ADIOS_SOURCEDIR>

2.3 ADIOS Dependencies

At the minimum, MPI C/C++ compilers and Python 2.7 or 3.x are needed to build ADIOS. A Fortran90
compiler and mpif90 compilers are needed to build the Fortran libraries and examples. Everything else below
is optional.

2.3.1 Python 2.x or 3.x (required)

The XML processing utility utils/gpp/gpp-py is a code written in python using xml.dom.minidom. It is
used to generate C or Fortran code from the XML configuration files that can be included in the application
source code. The configuration process will stop if a suitable python interpreter is not found.

2.3.2 MPI and MPI-IO (recommended, optional)

MPI and MPI-IO is required for ADIOS to build the parallel library. A sequential-only library can be built
by configuring with the --without-mpi option.

Currently, most large-scale scientific applications rely on the Message Passing Interface (MPI) library to
implement communication among processes. For instance, when the Portable Operating System Interface
(POSIX) is used as transport method, the rank of each processor in the same communication group, which
needs to be retrieved by the certain MPI APIs, is commonly used in defining the output files. MPI-IO can
also be considered the most generic I/O library on large-scale platforms.

2.3.3 Fortran90 compiler (optional)

The Fortran 90 interface and example codes are compiled only if there is an f90 compiler available. By default
it is required but you can disable it with the option --disable-fortran (Automake) or
export BUILD_FORTRAN=QFF (CMake).

2.3.4 Mini-XML parser (included now in ADIOS)

The Mini-XML library is used to parse XML configuration files. It is packaged now and built with the
ADIOS library. However, if one wants to build its own mxml library and link ADIOS applications with
it, Mini-XML can be downloaded from http://www.msweet.org/downloads.php?L+Z3. ADIOS works with
versions 2.5, 2.6, 2.7 and 2.9. Note that ADIOS does NOT work with version 2.8. We suggest to use
http://www.msweet.org/files/project3/mxml-2.9.tar.gzl

2.3.5 Lustreapi (optional)

The Lustreapi library is used internally by MPI_LUSTRE and MPI_AMR method to figure out Lustre param-
eters such as stripe count and stripe size. Without giving this option, users are expected to manually set
Lustre parameters from ADIOS XML configuration file (see MPI_LUSTRE and MPI_AMR method). Use the
configuration option --with-lustre=<path> to define the path to this library.

2.3.6 Staging transport methods (optional)

In ADIOS 1.13.1, three transport methods are available for memory-to-memory transfer (staging) of data
between two applications: The DataSpaces and DIMES libraries from Rutgers University and the Flexpath
library from Georgia Tech. A wide-are-network transfer method (ICEE) is also available.

21

http://www.msweet.org/downloads.php?L+Z3
http://www.msweet.org/files/project3/mxml-2.9.tar.gz

2.3.6.1 Networking libraries for staging

Staging methods use Remote Direct Memory Access (RDMA) operations, supported by specific libraries on
various systems.

Infiniband. If you have an Infininband network with ibverbs and rdmacm libraries installed, you can
configure ADIOS to use it for staging methods with the option --with-infiniband=DIR in Automake to
define the path to the Infiniband libraries. In CMake, library ibverbs is detected by examining if function
ibv_alloc_pd exists auomatically without extra effort by the user.

Cray Gemini network. On newer Cray machines (XK6 and XE6) with the Gemini network, the PMI and
uGNTI libraries are used by the staging methods. Configure ADIOS with the options in Automake

--with-cray-pmi=/opt/cray/pmi/default \
--with-cray-ugni-incdir=/opt/cray/gni-headers/default/include \
--with-cray-ugni-libdir=/opt/cray/ugni/default/1lib

or in CMake

export CRAY_PMI_DIR=/opt/cray/pmi/default
export CRAY_UGNI_DIR=/opt/cray/ugni/default

Portals. Portals is an RDMA library from Sandia Labs, and it has been used on Cray XT5 machines with
Seastar networks. Configure ADIOS with the option
--with-portals=DIR Location of Portals (yes/no/path_to_portals)

2.3.6.2 DataSpaces staging method

The DataSpaces model provides a separate server running on separate compute nodes, into/from which
data can be written/read with a geometrical (3D) abstraction. It is an efficient way to stage data from an
application to one or more other applications in an asynchronous way. Multiple steps of data outputs can
be stored, limited only by the available memory. It can also be used for interactive in-situ visualization,
where the visualization can be multiple steps behind the application. DataSpaces can be downloaded from
http://www.dataspaces.org

Build the DataSpaces method with the option in Automake:

--with-dataspaces=DIR Build the DATASPACES transport method. Point to the
DATASPACES installation.

--with-dataspaces-incdir=<location of dataspaces includes>

--with-dataspaces-libdir=<location of dataspaces library>

or in CMake
export DATASPACES_DIR=<location of DATASPACES installation>

2.3.6.3 DIMES staging method

In the DIMES model, the reading application pulls the data directly from the writer application’s memory. It
provides the same geometrical (3D) abstraction for writing/reading datasets as DataSpaces. It is an efficient
way to stage data from one application to another in an asynchronous (and very fast) way. Only a single
step of data output can be stored. DIMES is part of the DataSpaces library.

Build the DIMES method with the option:

--with-dimes=DIR Build the DIMES transport method. Point to the
DIMES installation.

--with-dimes-incdir=<location of dimes includes>

--with-dimes-libdir=<location of dimes library>

2.3.6.4 Flexpath staging method

Flexpath transport requires the Georgia Tech’s GTKorvo package at https://gtkorvo.github.io/. You
need to build this package directly for your environment.

22

http://www.dataspaces.org
https://gtkorvo.github.io/

If you build ADIOS with CMake this should be easy as GTKorvo uses CMake to build. In an empty
directory do:

wget https://gtkorvo.github.io/korvo_bootstrap.pl

to download a bootstrapping perl script. Then to configure a build environment compatible with ADIOS
1.13.1, run the bootstrap script with “adios-1.13.1” as a version tag:

perl ./korvo_bootstrap.pl adios-1.13.1 [install_path]

If you leave off the optional [install_path] argument, the script will set up an environment for an install
target of SHOME /{lib,bin,include}. The bootstrap script will download several files. After bootstrapping,
run:

perl ./korvo_build.pl

The script does not create the installation directory, so make sure it exists. Moreover, it needs write access
to the installation directory, so make sure that it is user writable.

To build ADIOS with Flexpath, export the following environment variable before running cmake for
configuring ADIOS:

export FLEXPATH_DIR="/opt/korvo"

If you build ADIOS with autotools you need to force building static libraries instead of the shared li-
braries. Besides the steps described above, before running the build, edit the configuration file korvo_build_config,
find the configure and cmake commands and add parameters to them:

korvogithub configure --disable-shared CFLAGS="-fPIC"
korvogithub cmake -DBUILD_SHARED_LIBS=0FF -DBUILD_SHARED_STATIC=STATIC \
-DCMAKE_C_FLAGS=-fPIC -DCMAKE_CXX_FLAGS=-fPIC

Note that the PIC flags is necessary (for all external packages) to be able to build the python wrapper later.
To build ADIOS with Flexpath, configure adios with the option:

--with-flexpath=DIR Where DIR is the installation directory of
the Korvo libraries.

Additionally, in the ADIOS XML file, we allow for the user to specify a queue size parameter specifying
how many output steps the writer can buffer before it blocks. For example,

<method group="arrays" method="FLEXPATH">QUEUE_SIZE=10</method>

2.3.6.5 ICEE wide-area-network staging method

The ICEE method is based on the same EVPath middleware library from Georgia Tech as the Flexpath
method, and therefore has the same requirements to build it. So when --with-flexpath is used, the ICEE
method will also be built.

2.3.7 Data transformation plugins (optional)

The data transformation layer provides on-the-fly data transformation services, such as compression. While
the data transformation layer itself is built automatically, each data transform plugin must be enabled during
configuration. Typically, transform plugins act as a bridge between ADIOS and an external library supplying
the actual transformation algorithms; in such cases, the location of this external library must also be specified.

Note that data encoded using a transform plugin can only be read back by an ADIOS install configured
with that same plugin enabled. For example, ADIOS must be configured with the zlib plugin to read back
zlib-compressed data.

Requirements for building the standard transform plugins included in ADIOS are listed below; for any
other (research) transforms, see their accompanying documentation.

e To enable zlib lossless compression, configure ADIOS with the following flag:

23

--with-z1lib=DIR Where DIR is the installation
directory of zlib (usually "/usr").

e To enable bzip2 lossless compression, configure ADIOS with the following flag:

--with-bzip2=DIR Where DIR is the installation
directory of bzip2

Note: bzip2 is available on the Titan Cray supercomputer through a module load command, "module

load bzip2", after which bzip2 can be configured with --with-bzip2=\$BZIP_DIR.

e To enable szip lossless compression, configure ADIOS with the following flag:

--with-szip=DIR Where DIR is the installation
directory of szip
e To enable SZ lossy compression, configure ADIOS with the following flag:

--with-sz=DIR Where DIR is the installation
directory of SZ

Note: SZ is available at https://collab.cels.anl.gov/display/ESR/SZ.

See Section [§] for instructions on invoking data transforms once they have been properly configured, as

well as some guidance on choosing transforms in practice.

2.3.8 Query methods (optional)

ADIOS has a Query API and it has three query engines (Minmax, FastBit and Alacrity), two of which depend

on external libraries. See Chapter [10]on how to use queries on ADIOS datasets.

2.3.8.1 FastBit

FastBit (https://sdm.1bl.gov/fastbit) can be downloaded from a public SVN repository:

svn co https://code.lbl.gov/svn/fastbit/trunk
Note: username and password: anonsvn
cd trunk
./configure --with-pic -prefix=<fastbit installation directory>
make
make install

To enable the FastBit query method, configure ADIOS with the following flag:

--with-fastbit=DIR Where DIR is the installation
directory of fastbit

2.3.8.2 Alacrity

Alacrity actually provides a transformation method to perform indexing while writing the data, and a query

method for reading data. The Alacrity library can be downloaded from GitHub

git clone https://github.com/ornladios/ALACRITY-ADIOS.git
cd ALACRITY-ADIOS

./configure CFLAGS="-g -fPIC -fno-common -Wall" CXXFLAGS="-g -fPIC -fno-exceptions

--prefix=<fastbit installation directory>
make
make install

To enable the Alacrity query method, configure ADIOS with the following flag:

--with-alacrity=DIR Where DIR is the installation
directory of alacrity

24

-fno-

https://collab.cels.anl.gov/display/ESR/SZ
https://sdm.lbl.gov/fastbit

2.3.9 Read-only installation

If you just want the read API to be compiled for reading BP files, use the --disable-write option with
Automake and export BUILD_WRITE=0FF with CMake.

2.3.10 Serial HDF5 (optional)

The bp2h5 converter utility to HDF5 format is built only if a HDF5 library is available. Currently ADIOS
uses the 1.6 version of the HDF5 API but it can be built and used with the 1.8.x version of the HDF5 library
too. Use the option --with-hdf5=<path> when configuring ADIOS with Automake or

export SEQ_HDF5_DIR=<path>
with CMake.

2.3.11 PHDF5 (optional)

The transport method writing files in the Parallel HDF5 format is built only if a parallel version of the HDF5
library is available. You need to use the option --with-phdf5=<path> with Automake to build this transport
method. While in CMake, you can build this method with

export PAR_HDF5_DIR=<path>

Notes: Do not expect better performance with ADIOS/PHDF5 than with PHDF5 itself. ADIOS does not
write differently to a HDF5 formatted file, it simply uses PHDF5 function calls to write out data. Also
good to know, that the method in ADIOS uses the collective function calls, that requires that every process
participates in the writing of each variable.

If you define Parallel HDF5 and do not define serial HDF5, then bp2h5 will be built with the parallel
library. Note that if you build this transport method, ADIOS will depend on PHDF5 when you link any
application with ADIOS even if your application does not intend to use this method. If you have problems
compiling ADIOS with PHDF5 due to missing flags or libraries, you can define them using

--with-phdf5-incdir=<path>,
--with-phdf5-1ibdir=<path> and
--with-phdf5-1ibs=<1link time flags and libraries>

2.3.12 NetCDF-4 Parallel (optional)

The NC4 transport method writes files using the NetCDF-4 library which in turn is based on the parallel
HDFS5 library. You need to use the option --with-nc4par=<path> to build this transport method. You also
need to provide the parallel HDF5 library.

While with CMake, the environment variables are set by the folloing:

export PAR_NC_DIR=<path>

Note: Do not expect better performance with ADIOS/NC4 than with NC4 itself. ADIOS does not write
differently to a HDF5 formatted file, it simply uses NC4 function calls to write out data. Also good to know,
that this method requires that every process participates in the writing of each variable.

2.4 Full Installation

2.4.1 Full Installation with Automake

The following list is the complete set of options that can be used with configure to build ADIOS and its
support utilities:

--help print the usage of ./configure command}
--with-tags [=TAGS] include additional configurations [automatic]
--with-pami=DIR Location of IBM PAMI

--with-dcmf=DIR Location of IBM DCMF

25

--with-mxml=DIR Location of Mini-XML library
--with-infiniband=DIR Location of Infiniband

--with-portals=DIR Location of Portals (yes/no/path_to_portals)
--with-cray-pmi=<location of CRAY_PMI installation>
--with-cray-pmi-incdir=<location of CRAY_PMI includes>
--with-cray-pmi-libdir=<location of CRAY_PMI library>
--with-cray-pmi-libs=<linker flags besides -L<cray-pmi-libdir>, e.g. -lpmi
--with-cray-ugni=<location of CRAY UGNI installation>
--with-cray-ugni-incdir=<location of CRAY UGNI includes>
--with-cray-ugni-libdir=<location of CRAY UGNI library>
--with-cray-ugni-libs=<linker flags besides -L<cray-ugni-libdir>, e.g. -lugni
--with-hdfb=<location of HDF5 installation>
--with-hdfb-incdir=<location of HDF5 includes>
--with-hdf5-1libdir=<location of HDF5 library>

--with-phdf5=<location of PHDF5 installation>
--with-phdf5-incdir=<location of PHDF5 includes>
--with-phdf5-1libdir=<location of PHDF5 library>
--with-netcdf=<location of NetCDF installation>

--with-netcdf -incdir=<location of NetCDF includes>

--with-netcdf -libdir=<location of NetCDF library>
--with-nc4par=<location of NetCDF 4 Parallel installation>
--with-ncé4par-incdir=<location of NetCDF 4 Parallel includes>
--with-ncé4par-libdir=<location of NetCDF 4 Parallel library>
--with-nc4par-1libs=<linker flags besides -L<nc4par_libdir>, e.g. -lnetcdf
--with-dataspaces=<location of DataSpaces installation>
--with-dataspaces-incdir=<location of DataSpaces includes>
--with-dataspaces-libdir=<location of DataSpaces library>
--with-dimes=<location of DataSpaces installation>
--with-dimes-incdir=<location of dimes includes>
--with-dimes-libdir=<location of dimes library>
--with-flexpath=<location of the Chaos packages>
--with-lustre=<location of Lustreapi library>

--with-z1ib=DIR Location of ZLIB library

--with-bzip2=DIR Location of BZIP2 library

--with-szip=DIR Location of SZIP library

--with-isobar=DIR Location of ISOBAR library

--with-aplod=DIR Location of APLOD library

--with-alacrity=DIR Location of ALACRITY library

--with-fastbit=DIR Location of the FastBit library

--with-1z4=DIR Location of LZ4 1library

--with-sz=DIR Location of SZ library

--with-blosc=DIR Location of Blosc library

--with-bgq Whether to enable BGQ method or not on Bluegene/Q

Some influential environment variables are lists below:

CcC C compiler command

CFLAGS C compiler flags

LDFLAGS linker flags, e.g. -L<1lib dir> if you have libraries
in a nonstandard directory <1lib dir>

CPPFLAGS C/C++ preprocessor flags, e.g. -I<include dir> if you
have headers in a nonstandard directory <include dir>

CPP C preprocessor

CXX C++ compiler command

CXXFLAGS C++ compiler flags

FC Fortran compiler command

FCFLAGS Fortran compiler flags

26

CXXCPP C++ preprocessor

F77 Fortran 77 compiler command
FFLAGS Fortran 77 compiler flags
MPICC MPI C compiler command

MPIFC MPI Fortran compiler command

2.4.2 Full Installation with CMake

The following list is the complete set of options that can be used with configure to build ADIOS and its
support utilities:

export MXML_DIR=<location of mxml installation>

export SEQ_NC_DIR=<location of sequential netcdf installation>
export PAR_NC_DIR=<location of parallel netcdf installation>
export SEQ_HDF5_DIR=<location of sequential hdf5 installation>
export PAR_HDF5_DIR=<location of parallel hdf5 installation>
export CRAY_UGNI_DIR=<location of CRAY UGNI installation>
export CRAY_PMI_DIR=<location of CRAY_PMI installation>

export DATASPACES_DIR=<location of DataSpaces installation>

Some influential environment variables are lists below:

CcC C compiler command

CFLAGS C compiler flags

LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries
in a nonstandard directory <1lib dir>

CXX C++ compiler command
CXXFLAGS C++ compiler flags
FC Fortran compiler command

FCFLAGS Fortran compiler flags

2.5 Compiling applications using ADIOS

ADIOS configuration creates a text file that contains the flags and library dependencies that should be used
when compiling/linking user applications that use ADIOS. This file is installed as bin/adios_config.flags
under the installation directory by make install. A script, named adios_config is also installed that can
print out selected flags. In a Makefile, if you set ADIOS_DIR to the installation directory of ADIOS, you can
set the flags for building your code flexibly as shown below for a Fortran application:

override ADIOS_DIR <your ADIOS installation directory>
override ADIOS_INC $(shell ${ADIOS_DIR}/bin/adios_config -c -f)
override ADIOS_FLIB := $(shell ${ADIOS_DIR}/bin/adios_config -1 -f)

example.o : example.F90
${FC} -g -c ${ADIOS_INC} example.F90 $<

example: example.o
${FC} -g -o example example.o ${ADIOS_FLIB}

The example above is for using write (and read) in a Fortran + MPI application. However, several libraries
are built for specific uses:

e libadios.a MPI + C/C++ using ADIOS to write and read data
e libadiosf.a MPI + Fortran using ADIOS to write and read data
e libadios_nompi.a C/C++ without MPI

27

libadiosf_nompi.a Fortran without MPI

e libadiosread.a MPI + C/C++ using ADIOS to only read data
e libadiosreadf.a MPI + Fortran using ADIOS to only read data
e libadiosread_nompi.a C/C++ without MPI, using ADIOS to only read data
e libadiosreadf_nompi.a Fortran without MPI, using ADIOS to only read data

The C libraries include both the old and new API in one library. However, the old read API in Fortran
has name clashes with the new API, therefore separate Fortran libraries are built for it:

e libadiosf_vl.a

e libadiosreadf_vl.a

e libadiosf_nompi_vl.a

e libadiosreadf_nompi_vl.a

The following options in adios_config allows for setting the include and link flags for a specific build:

adios_config [-d | -c | -11 [-£f] [-r]l [-s] [-11 [-v] [-il
Arguments
-d Base directory for ADIOS install
-c Compiler flags for C/C++, using ADIOS write/read methods
-1 Linker flags for C/C++, using ADIOS write/read methods

-f Print above flags for Fortran90

-r Print above flags for using ADIOS read library only.

-8 Print above flags for using ADIOS in a sequential code (no MPI).
-1 Print above flags for using old Read API of ADIOS.

-m Print available write/read methods and data transformation methods
-V Version of the installed package
-i More installation information about the package

Notes

- Multiple options of d,c,l are enabled. In such a case, the output 1is
a list of FLAG=flags, where FLAG is one of (DIR, CFLAGS, LDFLAGS)
- If none of d,c,l are given, all of them is printed
- If none of f,r,s are given, flags for C/C++, using ADIOS write/read
methods are printed
- -m can be combined with -r (readonly libraries) and -s (sequential libraries)

That is, for example, adios_config -1frs will print the link flags for building a sequential Fortran
application that only reads data with ADIOS.

2.5.1 Sequential applications

Use the -D_NQOMPI pre-processor flag to compile your application for a sequential build. ADIOS has a dummy
MPI library, mpidummy.h, that re-defines all MPI constructs necessary to run ADIOS without MPI. You can
declare

MPI_Comm comm;

in your sequential code to pass it on to functions that require an MPI_Comm variable.

If you want to write a C/C++ parallel code using MPI, but also want to provide it as a sequential tool on
a login-node without modifying the source code, then write your application as MPI, do not include mpi.h
but include adios.h or adios_read.h. They include the appropriate header file mpi.h or mpidummy.h (the
latter provided by ADIOS) depending on which version you want to build.

28

2.6 Language bindings

ADIOS comes with various bindings to languages, that are not built with the Automake tools discussed
above. After building ADIOS, these bindings have to be manually built.

2.6.1 Support for Matlab

Matlab requires ADIOS be built with the GNU C compiler. It also requires relocatable codes, so you need
to add the -fPIC flag to CFLAGS before configuring ADIOS. You need to compile it with Matlab’s MEX
compiler after the make and copy the files manually to somewhere where Matlab can see them or set the
MATLABPATH to this directory to let Matlab know where to look for the bindings.

cd wrappers/matlab
make matlab

2.6.2 Support for Java

ADIOS provides a Java language binding implemented by the Java Native Interface (JNI). The program
can be built with CMake (http://www.cmake.org/) which will detect your ADIOS installation and related
programs and libraries. With CMake, you can create a build directory and run cmake pointing the Java
wrapper source directory (wrappers/java) containing CMakeLists.txt. For example,

cd wrappers/java
mkdir build

cd build

cmake

CMake will search installed ADIOS libraries, Java, JNI, MPI libraries (if needed), etc. Once completed,
type make to build. If you need verbose output, you type as follows:

make VERBOSE=1

After successful building, you will see libAdiosJava.so (or libAdiosJava.dylib in Mac) and AdiosJava.jar.
Those two files will be needed to use in Java. Detailed instructions for using this Java binding will be
discussed in Section 411

If you want to install those files, type the following;:

make install

The default installation directory is /usr/local. You can change by specifying CMAKE_INSTALL_PREFIX
value;

cmake -DCMAKE_INSTALL_PREFIX=/path/to/install /dir/to/source

Or, you can use the ccmake command, the CMake curses interface. Please refer to the CMake documents
for more detailed instructions.
This program contains a few test programs. To run testing after building, type the following command:

make test
If you need a verbose output, type the following

ctest -V

2.6.3 Support for Python/Numpy

ADIOS also provides two Python/Numpy language bindings developed by Cython; One is a binding for serial
ADIOS (default), which requires no MPI, and the other is a MPI-enabled binding (optional). Like Matlab,
ADIOS Python/Numpy wrapper requires ADIOS built by the GNU C compiler with relocatable codes. Add
-fPIC flag to CFLAGS before configuring ADIOS. In addition, Python Numpy is required before building
Adios Python/Numpy binding and MPI4Py is optional, if users want to build parallel python module.

The following command will build a Python/Numpy binding for serial ADIOS (adios_config and python
should be in the path):

29

http://www.cmake.org/

cd wrappers/numpy
make python

If you need a MPI-enabled binding, which requires MPI4Py installed, type the following:
make MPI=y python

After successful building, you need to install them in a python path. There are three options.
python setup.py install

will install python’s default installation location. This may require an admin privilege. If you want to install
in a custom directory, type

python setup.py install --prefix=/dir/to/install

and append the directory to the PYTHONPATH environment variable. You can also install in your local directory.
Use the following command:

python setup.py install --user

Another way to install ADIOS python wrapper is using pip which is a package management system in
Python. With pip installed in your system, run the following command:

pip install adios
pip install adios_mpi

30

Chapter 3

ADIOS Write API

As mentioned earlier, ADIOS writing is comprised of two parts: the XML configuration file and APIs. In
this section, we will explain the functionality of the writing API in detail and how they are applied in the
program.

3.1 Write API Description

3.1.1 Introduction

ADIOS provides both Fortran and C routines. All ADIOS routines and constants begin with the prefix
“adios_”. For the remainder of this section, only the C versions of ADIOS APIs are presented. The primary
differences between the C and Fortran routines is that error codes are returned in a separate argument for
Fortran as opposed to the return value for C routines.

A unique feature of ADIOS is group implementation, which is constituted by a list of variables and
associated with individual transport methods. This flexibility allows the applications to make the best use
of the file system according to its own different I/O patterns.

3.1.2 ADIOS-required functions

This section contains the basic functions needed to integrate ADIOS into scientific applications. ADIOS is a
lightweight I/0 library, and there are only six required and an optional functions from which users can write
scalable, portable programs with flexible I/O implementation on supported platforms:

adios init — initialize ADIOS and load the configuration file

adios _open — open the group associated with the file

adios group size — optional. Pass the group size to allocate the memory for buffering

adios write — write the data either to internal buffer or disk

adios read — associate the buffer space for data read into

adios close — commit write/read operation and close the data

adios _finalize — terminate ADIOS

You can add functions to your working knowledge incrementally without having to learn everything
at once. For example, you can achieve better I/O performance on some platforms by simply adding the
asynchronous functions adios start calculation, adios _end calculation, and adios _end iteration to your
repertoire. These functions will be detailed below in addition to the seven indispensable functions.

The following provides the detailed descriptions of required APIs when users apply ADIOS in the Fortran
or C applications.

3.1.2.1 adios_ init

This function is required only once during the program run. It loads the XML configuration file and establishes
the execution environment. Before any ADIOS operation starts, adios_init is required to be called to create
internal representations of various data types and to define the transport methods used for writing. From
version 1.5, this function does have an MPI_Comm comm argument.

31

int adios init (const char * xml_fname, MPI_Comm comm)
Input:
e xml fname - string containing the name of the XML configuration file

e comm - MPI communicator. Any process that is going to use ADIOS should call this function and
must be a member of this communicator.

Fortran example:

call adios init ("config.xml", comm, ierr)

3.1.2.2 adios open

This function is to open or to append to an output file. adios open opens an adios-group identified by
group_mame and associates it with one or a list of transport methods. A pointer is returned as fd_p for
subsequent operations. The group name should match one of the groups defined in the XML file. The I/0
handle The third argument, file name, is a string representing the name of the file. The fourth argument
mode is a string containing a file access mode. It can be one of these four mode specifiers: “r,” “w,” “a.” or “u”.
Currently, ADIOS supports four access modes: “write or create if file does not exist,” “read,” “append file,”
and “update file.” Appending increases the built-in timestep in the file, so when reading, the variables appear
at different timesteps. Updating adds variables to the latest timestep in the file. The last argument is the
MPI communicator comm that includes all processes that write to the file. Individual writes can be called
by individual processes, but adios_group size and adios_close are collective operations, that all processes
under this communicator should call.

Note, that a file is not necessarily opened during this call. Some methods postpone the actual file open
to adios_ group_ size.

Note, that before version 1.5, this funct